[UFF] Questão 16 - Teoria dos conjuntos e Intervalos reais [Matemática]

Com relação aos conjuntos PG1hdGggbWF0aHNpemU9IjQwIj4KICAgIDxtcm93PgogICAgICAgIDxtdGV4dCBtYXRoc2l6ZT0iMjAiPlA9e3g8L210ZXh0PgogICAgICAgIDxtdGV4dCBtYXRoc2l6ZT0iMjAiPiYjeDIyMEE7PC9tdGV4dD4KICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj4mI3gyMTI0OzwvbXRleHQ+CiAgICAgICAgPG1vIG1hdGhzaXplPSIyMCI+fDwvbW8+CiAgICAgICAgPG1vIG1hdGhzaXplPSIyMCI+fHh8PC9tbz4KICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj4mI3gyMjY0OzwvbXRleHQ+CiAgICAgICAgPG1zcXJ0IG1hdGhzaXplPSIyMCI+CiAgICAgICAgICAgIDxtdGV4dD43PC9tdGV4dD4KICAgICAgICA8L21zcXJ0PgogICAgICAgIDxtbyBtYXRoc2l6ZT0iMjAiPn08L21vPgogICAgPC9tcm93PgogICAgPG10ZXh0IG1hdGhzaXplPSIyMCI+ZTwvbXRleHQ+CiAgICA8bXJvdz4KICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj5RPXt4PC9tdGV4dD4KICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj4mI3gyMjBBOzwvbXRleHQ+CiAgICAgICAgPG10ZXh0IG1hdGhzaXplPSIyMCI+JiN4MjEyNDs8L210ZXh0PgogICAgICAgIDxtbyBtYXRoc2l6ZT0iMjAiPnw8L21vPgogICAgICAgIDxtc3VwPgogICAgICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj5YPC9tdGV4dD4KICAgICAgICAgICAgPG10ZXh0IG1hdGhzaXplPSIxNSI+MjwvbXRleHQ+CiAgICAgICAgPC9tc3VwPgogICAgICAgIDxtdGV4dCBtYXRoc2l6ZT0iMjAiPiYjeDIyNjQ7PC9tdGV4dD4KICAgICAgICA8bXRleHQgbWF0aHNpemU9IjIwIj4wLDMzMy4uLjwvbXRleHQ+CiAgICAgICAgPG1vIG1hdGhzaXplPSIyMCI+fTwvbW8+CiAgICA8L21yb3c+CjwvbWF0aD4=

afirma-se: 

 I. P U Q = P
II. Q – P = {0}
III. P PG1hdGggbWF0aHNpemU9IjQwIj4KICAgIDxtcm93PgogICAgICAgIDxtdGV4dCBtYXRoc2l6ZT0iMjAiPiYjeDIyODI7PC9tdGV4dD4KICAgICAgICA8bXNxcnQgbWF0aHNpemU9IjIwIj4KICAgICAgICA8L21zcXJ0PgogICAgPC9tcm93PgogICAgPG1yb3c+CiAgICA8L21yb3c+CjwvbWF0aD4= Q
IV. P  Q = Q

Somente são verdadeiras as afirmativas:

Você precisa fazer login para responder perguntas